Project and content management for Contemporary Authors volumes
WORK TITLE: Replacing Darwin
WORK NOTES:
PSEUDONYM(S):
BIRTHDATE:
WEBSITE:
CITY:
STATE:
COUNTRY:
NATIONALITY:
https://answersingenesis.org/bios/nathaniel-jeanson/
RESEARCHER NOTES:
PERSONAL
Male.
EDUCATION:University of Wisconsin-Parkside, B.S.; Harvard University, Ph.D.
ADDRESS
CAREER
Writer. Answers in Genesis, research biologist and speaker. Worked formerly as a research scientist at the Institute for Creation Research.
WRITINGS
Contributor to peer-reviewed journals, including Blood, Nature, and Cell.
SIDELIGHTS
Nathaniel T. Jeanson is a research scientist, writer, and speaker. He received his bachelor’s degree in molecular biology and bioinformatics from the University of Wisconsin-Parkside and his Ph.D. in cell and developmental biology from Harvard University.
Jeanson’s research focus is the origin of species. He has presented his research at regional and national conferences, and has been published in peer-reviewed journals, including as Blood, Nature, and Cell. Jeanson conducts research at Answers in Genesis. He worked previously as a researcher at the Institute for Creation Research.
In Replacing Darwin: The New Origin of Species, Jeanson takes on the difficult and controversial task of disproving Darwin’s theory of evolution, and replacing it with a biblical creationist story of origin. Jeanson writes that in the years since Darwin’s publication of his theory, new discoveries and scientific advances have corrected Darwin’s mistakes and brought mankind closer to a true understanding of human evolution. Jeanson argues that the current theories of evolution are harmonious with a view that incorporates a designing God.
The book opens with an overview of Darwin’s theory of evolution and the modern understanding of genetics. He explains that Darwin’s theory was based on ideas of adaptation, moderation of traits, and migration, and these ideas conflicted with accepted creationist views of the day. He details the gaps or missteps in Darwin’s theory, and how modern science has come to fix those errors. He then goes on to describe Mendel’s contribution to science in the form of trait inheritance. Mendel determined that traits were either dominant or recessive, though he was unclear as to how or why these variances occur. Jeanson describes how modern science has answered these questions, and goes on to describe in detail the functionality of DNA.
With this evolutionary background in place, Jeanson then examines Darwin’s incorporation of geography and ancestry into his theories. Darwin suggested species are not fixed, but rather have migrated and been separated by shifting earth plates. Jeanson then explains ancestry and the categorization of species and breeds. Here he begins to introduce his bible-based theories regarding evolution. Jeanson notes that it has only taken humans a few thousand years to selectively mate animals, creating breeds. He argues that it is difficult to believe humans could achieve this differentiation in such a short time while also accepting the Darwinian evolutionary perspective that it took nature millions of years to produce a much smaller number of species. In making this assertion, Jeanson suggests that human’s arrival may have happened much more recently than evolutionists claim, much closer to the bible’s timeline of Adam and Eve. He attempts to undermine the notion that heredity results in functionless traits, suggesting instead that DNA is intentionally and purposefully designed.
Jeanson points to naturally occurring accelerated rates of change such as in nuclear decay, tectonic plate movements, deposition rates, and other geological processes, and suggests that human mutation and evolution may have similarly experienced an accelerated rate of adaptation. Jeanson provides a handful of predictions regarding future research into the topic. He concludes the book with a series of expectations, all of which suggest that creationist research will continue to provide proof that humans have come to be as the result of a designing God.
A contributor to Kirkus Reviews described the book as “a thrilling reconsideration of the tug of war between science and creationism,” while Dan Reynolds in Triangle Association for the Science of Creation website wrote Replacing Darwin “shows how operational science produces results in harmony with biblical history.” Stefan Frello on the Answers in Genesis website wrote: “the book is readable by the broad public, and it has a brilliant account of the basics and history of genetics,” adding, “all details necessary to understand the arguments are clearly presented.”
BIOCRIT
PERIODICALS
Kirkus Reviews, February 15, 2018, review of Replacing Darwin: The New Origin of Species.
ONLINE
Answers in Genesis, https://answersingenesis.org/ (April 25, 2018 ), Stefan Frello, review of Replacing Darwin.
Triangle Association for the Science of Creation, http://www.tasc-creationscience.org/ (January 1, 2018), Dan Reynolds, review of Replacing Darwin.
Nathaniel T. Jeanson earned his B.S. in Molecular Biology and Bioinformatics from the University of Wisconsin-Parkside and his PhD in Cell and Developmental Biology from Harvard University. His research findings have been presented at regional and national conferences, and have been published in peer-reviewed journals, such as Blood, Nature, and Cell. Since 2009, he has been actively researching the origin of species.
Dr. Nathaniel Jeanson holds a PhD in cell and developmental Biology from Harvard University. He serves as a research biologist, author, and speaker with Answers in Genesis and formerly conducted research with the Institute for Creation Research.
Jeanson, Nathaniel T.: REPLACING DARWIN
Kirkus Reviews. (Feb. 15, 2018):
Copyright: COPYRIGHT 2018 Kirkus Media LLC
http://www.kirkusreviews.com/
Full Text:
Jeanson, Nathaniel T. REPLACING DARWIN Master Books (Indie Nonfiction) $24.99 10, 9 ISBN: 978-1-68344-075-8
A radically new approach to evolution seeks to harmonize reason and revelation.
Charles Darwin's On the Origins of the Species was a groundbreaking work in 1859--all the more impressive given the limitations imposed by his time. He relied heavily on fossils, but they provide no direct evidence of ancestry and are only really helpful given some prior understanding of genetics, which was not yet an existing science. In fact, all of Darwin's theories were proposed prior to the discovery of DNA, with the prescience of his contributions a triumph of the scientific method, or inductive reasoning. But in the last 130 years, debut author Jeanson argues, new leaps in the understanding of the mechanisms of evolution have given scientists the vision to correct Darwin's missteps and inch closer to an account of the origins of human life. The author is particularly interested in the boost given by the development of genetics as a field of scientific inquiry. If the mystery of the origins of the species is essentially one about the origins of traits, and they are governed by DNA, then the science of genetics holds the key to an eventual solution to the mystery. Provocatively, Jeanson suggests that the current bank of evidence available today is consistent with a view that includes a designing God; in one of the more gripping discussions, the author shows how the rate of human mutation actually corresponds to a creationist time scale of 6,000 years. The author is a scientist with peer-reviewed publications and a Ph.D. in cell and developmental biology from Harvard University. His knowledge of the material--historical and contemporary--and the rigor of his analysis are unimpeachable. In addition, while the subject matter is likely to be intellectually challenging for even the highly educated layperson, it won't be because of Jeanson's prose, which is beautifully limpid. Furthermore, he clearly grasps the gravity of the matter at hand and rises to the occasion: "The reason that the origins debate provokes such emotional responses is because it inexorably converges on philosophical and religious themes. The science of origins reaches to our deepest viscera."
A thrilling reconsideration of the tug of war between science and creationism.
Source Citation (MLA 8th Edition)
"Jeanson, Nathaniel T.: REPLACING DARWIN." Kirkus Reviews, 15 Feb. 2018. General OneFile, http://link.galegroup.com/apps/doc/A527247911/ITOF?u=schlager&sid=ITOF&xid=880ea0a2. Accessed 5 June 2018.
Gale Document Number: GALE|A527247911
Review of Replacing Darwin: The New Origin of Species by Nathaniel T. Jeanson
January, 2018
Dan Reynolds PhD
AbiogenesisEvolutionGenetics
Dr. Nathaniel Jeanson's new book Replacing Darwin: the New Origin of Species1 was released in October of 2017. Jeanson holds a doctorate in cell and developmental biology from Harvard (2009). He joined the staff at the Institute for Creation Research (ICR) in 2009 but has since moved to Answers in Genesis (AIG) where he is a research biologist, author, and speaker. Jeanson has written numerous lay articles, book chapters, and technical papers in secular and creationist journals.2 He has also debated several evolutionists.3
In Replacing Darwin, Jeanson shows how the known data and principles of genetics fit biblical history as understood by young earth creationists (YECs). He develops a testable model of speciation consistent with Genesis and makes predictions. Jeason provides sufficient backgrounds in basic biochemistry and genetics for non-specialists to grasp his arguments. He has uncovered interesting relationships between speciation and time for several biological families.
The book includes copious endnotes and graphical illustrations, references, a glossary, but no index.
The following review will cover the book chapter by chapter.
Chapter 1: Inevitable
Two paradigm shifts in biology were inevitable. At the time of Darwin, fewer species were known than today. Each species appeared well adapted to its particular habitat, as though designed that way. This led some to the ideas of fixity of species in adaptations and locations. Darwin said these ideas were wrong. He provided evidence for descent with modification in related species and for species migration. This appeared to overturn the teachings of many creationists of Darwin’s day. Darwin speculated that all species could be explained by descent with modification from a universal common ancestor. Since the time of Darwin, science has learned of genetics and has a much broader and deeper knowledge of biology in general—knowledge that will lead to the next paradigm shift. Jeanson focuses on speciation: how it works, what affects the rate, etc.
Chapter 2: The Secret of Life
The question of the origin of species concerns the origin of traits. Mendel was the first to elucidate the principles of inheritance. Mendel found concerning traits: they remained distinct (did not blend), appeared and disappeared in family trees, came in dominant and recessive types, that maternal/paternal traits remained distinct, and the instructions for different traits are sorted independently. Mendel did not show why traits behaved the way they did. Darwin was apparently unaware of Mendel’s work.
Insofar as cellular reproduction is concerned, we now know that somatic cells (non-sex cells) undergo mitosis to produce cells with a diploid chromosome number (two sets of chromosomes) while sex cells undergo meiosis to produce cells with a haploid number (single set) of chromosomes. We also know that chromosomes contain the information for traits.
Historically, scientists had to figure out if the information for traits was stored in proteins or nucleic acids. Since proteins consist of 20 types of amino acids and nucleic acids of a mere four nucleotides, many suspected DNA was a simple substrate that carried proteins where the information for traits resided. However, experiments were conducted that showed DNA did indeed carry the information for traits. Watson and Crick figured out the structure of DNA in the 1950s.
Chapter 3: Cracking the Code
We now know that DNA controls traits. In the cell, ATP is the energy currency, proteins are the workhorses, and DNA carries the blueprints. DNA is a polymer of monomer units strung together. Each monomer unit consists of ribose (a sugar), a phosphate group, and a base (purine or pyrimidine). A single monomer unit is called a nucleotide. There are four basic monomer units; they are represented by the letters A, C, G, and T (adenine, cytosine, guanine, and thymine, respectively). The sequence of monomers in DNA codes for amino acids in proteins using the genetic code. Every three contiguous monomer units in DNA (called a “codon”) corresponds to a particular amino acid. In the cell nucleus, DNA is read and converted (transcribed) into a messenger RNA (mRNA), a close representation of a section of DNA. The mRNA is transported to a cellular machine called the ribosome where it is translated into a sequence of amino acids to form a protein.
A gene is a section of DNA that codes for proteins that have specific functions in the cell. There are both mitochondrial DNA (mtDNA) and nuclear DNA (nucDNA). Mitochondrial DNA was sequenced in humans before nuclear DNA.
Genomes of several organisms have been sequenced. It has been learned that only a small portion of the human genome is used to code for proteins. What does the remaining “non-coding” DNA do? Some said it was inactive, redundant, or left over from the evolutionary process. It is possible that some genes are activated by environmental conditions and not typically expressed. Scientists perform “knock-out” experiments to determine the function of DNA in non-human species. In other words, sections of DNA are removed from the genome of an organism to see what effect its removal will have. In this way the functions of sections of DNA can be determined. Comprehensive knock-out experiments for a mammal have yet to be performed, so it is premature to make the claim that the majority of non-coding DNA is non-functional (“junk”). The ENCODE project examined 1% of the non-coding DNA of the human genome for possible function. They found that at least 80% of the noncoding DNA was transcribed into RNA, suggesting function. It has been found that the non-coding regions of genomes correlate with biological complexity better than the protein coding regions, suggesting that the non-coding regions do indeed carry significant information, probably for regulatory activity. ENCODE did not look at the portions of the genome involved exclusively in development; such DNA would only have function then. The trajectory of discovery favors genome-wide functionality.
Non-coding DNA is probably involved in regulatory functions (when and how fast to make specific proteins), embryonic development, the timings of protein manufacture, stagings of proteins for construction of molecular machines, switches, etc. Some non-coding DNA is transcribed into short chain micro-RNA that binds to specific sites in DNA thereby regulating transcription of those sites. Some RNA is involved in the splicing of mRNA before it is translated in the ribosome. We are just beginning to understand the development process, how coding and non-coding DNA coordinate when, where, and how structures are sequentially put in place to produce a fully functional organism.
Chapter 4: The Riddle of Geography
Darwin used inductive reasoning when writing the Origin of Species. He gathered facts, then tested hypotheses against the facts to see which best fit the data. Today species are isolated globally by oceans, deserts, and mountains. In the past, animals may have migrated by land bridges no longer in existence such as between Russia and Alaska or between modern Australia and Southeast Asia. An ice age would have removed water from the oceans and exposed land bridges. Recession of the ice sheets would have covered the land bridges once more.
Descent with modification from a common ancestor can explain the global patterns of distribution. In this scenario, a common ancestor wandered to various locations. These locations then became isolated. Microevolution then produced location-specific species. Through his observations, Darwin was able to eliminate the then creationist ideas of fixity of species and location.4
Chapter 5: The Riddle of Ancestry
Jeanson describes the Linnaean classification system: species, genus, family, order, class, phylum, kingdom. More organisms are included in each level of classification as one goes from species to kingdom. The higher the classification group, the more diverse the organisms; organisms in a family are more diverse than those in a genus. Darwin looked at similarities and differences between organisms and assumed they were the result of descent with modification. Similar structures were said to be homologous.5 He noted how the patterns of similarities among organisms could be grouped into nested hierarchies. He assumed the pattern was the result of what we call macroevolution, molecules to man evolution.
When selecting a hypothesis among competing hypotheses, one has to keep in mind that better hypotheses may not have yet been formulated. Jeanson shows how man-made vehicles can be arranged into nested hierarchies. Hence a nested hierarchical pattern is consistent with descent with modification from a common ancestor and designed objects. Hence the observation of nested hierarchies is equivocal on the origin of species and can’t distinguish between evolution and design. Interestingly, the original Linnaean system was based on function, not alleged evolutionary relationships. Darwin’s explanations did not eliminate the design hypothesis.
The poor design and vestigial organ ideas from evolutionists were argued from ignorance, not rigorous research. It was thought that some organs were poorly designed and hence could not have been the work of an omnipotent and omniscient creator. It turned out that the organs in question were merely poorly understood and not poorly designed. The “backwards” wiring of the human eye is a good example of this.6 Likewise, “vestigial” organs thought to be useless leftovers from evolution have function after all. Jeanson mentions the appendix, coccyx, and “whale legs” as examples here. Jeanson predicts future criticisms of design will come from the least studied areas in biology.
Jeanson discusses breeds and species. Breeds have resulted from human domestication while species are a result of natural selection in the wild. For most mammals and birds, there are usually many more breeds than species. This is because humans can deliberately select desired traits through controlled mating and isolation in a relatively efficient manner.
As stated previously, the old ideas of fixity of species and locations were falsified by the evidence. Creationists had the wrong understanding. But this did not prove universal common ancestry (macroevolution) as Darwin supposed. The Hebrew word for created kind is min. Jeanson says that a min is defined by organisms that can hybridize, probably grouped at the level of family or order. Modern creationists acknowledge descent with modification within created kinds and the potential roles of migration and isolation in speciation. Our current understanding of the variation and distribution of kinds is consistent with creationist views. Jeanson says the current evidence does not distinguish between universal common ancestry and design.
Chapter 6: A Stitch in Time
Most evolutionists put the origin of breeds back to about 12,000 years ago. There are hundreds of horse and donkey breeds, but only seven equid species in the wild. The same pattern is seen for cattle, sheep, antelope, pigs, rabbits, camels, llamas, dogs, wolves, cats, chickens, ducks, etc. Jeanson thinks it is unreasonable to assert that it only took a few thousand years for humans to produce hundreds of breeds but nature millions of years to produce a handful of species. Jeanson says it probably does not take long for nature to produce species.
There are living today 5400 mammal species, 1300 genera, and 200 families. If most vertebrate species (70,000) arose in the last 12,000 years, it would mean that 98.4% of extant vertebrate diversity arose recently. The rate at which we discover new species is much greater than the rate of speciation so that we currently do not have enough data to say if rapid speciation has occurred. The experiments that would demonstrate if rapid speciation has occurred have not been done.
Chapter 7: Turning the (time) Tables
Genetic research has shown there are DNA sequence differences due to mutations between generations of organisms. Mutations come in many forms: single nucleotide polymorphisms (SNPs), insertions, deletions, translocations, etc. The mutation rate per generation can be measured. We can get the time of origin of a mutation by comparing DNA differences between organisms and extrapolating backwards with the known mutation rate.
Many organisms have nuclear DNA and mitochondrial DNA. At present we have 6800 curated animal mtDNA sequences, 880 from mammals. We have a combined total 50,000 curated and uncurated vertebrate mtDNA sequences. We can get nested hierarchies from comparison of mtDNA sequences between different families. This result fits the expectations of both evolutionary and design models. Jeanson’s model holds that variations in mtDNA sequences within families are functionally neutral and are simply a result of descent with modification from common ancestors. However, the differences found in mtDNA sequences between families he believes will show functional differences since the families don’t share a common ancestor but a common designer. The evolution model, on the other hand, predicts that all mtDNA differences are functionally neutral, being due to genetic drift, not design.
The potential multiple functions for proteins coded for by mtDNA have not been studied; future experiments may address this.
Jeanson examines the mtDNA mutation rate in humans. The human mtDNA mutation rate is one mutation for every five to eight generations. Evolutionists say humans emerged 200,000 years ago. Evolutionist usually hold to uniformatarianism, the idea that natural rates remain the same over time.
Creationists have performed experiments and made observations consistent with accelerated rates of change in nuclear decay, tectonic plate movements, deposition rates, and other geological processes. In other words, there are evidences that support a recent creation of the earth.
Jeanson builds his arguments assuming constant mtDNA mutation rates. Evolutionists often infer a mutation rate by considering differences in DNA sequences of extant organisms and the alleged date of speciation or lineage splitting based on standard geological dating. Few actually measure the mutation rate directly (in real time). According to evolution, homo diverged from chimpanzees 4.5 to 17 million years ago. We know that the human mtDNA mutation rate, measured directly, is one mutation every five to eight generations. A generation occurs every 15 to 50 years. Hence, we would expect one mutation every 76 to 419 years. Based on the evolutionary timescale then, there should be 21,480 to 447,368 differences in the mtDNA between humans and extant chimpanzees,7 but there are only 1483. There are approximately 17,000 base pairs in mtDNA. If evolutionists are correct about the timescale, the human mtDNA would be “mutationally saturated” or completely scrambled relative to the chimpanzee mtDNA, but there is only a 9% difference. The same problem is encountered in the mtDNA differences between Neanderthal and extant humans and between Africans and non-Africans. Consistently, actual mutation rates applied over alleged evolutionary time overestimate the actual number of mutations observed. Clearly, the results suggest either a different mutation rate or much shorter timescale. The measured mutation rates and known differences in mtDNA align well with the biblical creation hypothesis of a 6000-year-old earth. There is evidence that African mtDNA has mutated faster than non-African mtDNA. One possible cause is that African women marry earlier. Also, there is evidence that African nucDNA mutates faster than non-African nucDNA.
It has been known for years that human mtDNA differences divide into three major groups designated L, M, and N. L, M, and N are known as halogroups.
There is evidence that the earth was once underwater. There are marine fossils on mountains and in land-locked areas far from the sea. Some sedimentary rock layers extend over entire continents or even farther. The deposition of those layers must have been catastrophic, or there would not have been much fossilization. There are fossils of animals giving birth, of fish being eaten, etc., suggesting sudden and rapid burial. The eruption at Mount St. Helens demonstrated that sedimentary layers hundreds of feet thick could be laid down in hours to days, that canyons can be formed rapidly, how multiple fossilized forests could form as the result of a single volcanic eruption, and possibly how coal seams could be produced quickly. Recent discoveries of dinosaur soft tissue in association with intact biomolecules suggest the dinosaurs have been extinct for only thousands of years, not millions. All these observations are in accord with the Flood of Noah covering the entire earth a few thousand years ago.
Amazingly, genetics match predictions of the Flood model. Mitochondrial DNA is inherited exclusively from mothers. There were three young married women on the Ark who would have repopulated the earth after the Flood 4500 years ago. There are three major types of human mtDNA in the world! Also consistent is the Babel dispersion where one would expect sudden formation of several variants in human mtDNA due to rapid separation and isolation of various groups of people. This is what is actually observed!
There was about 1650 years from Adam to Noah’s sons, 2000 years from Adam to Abraham, and 2500 years from the Flood to Jesus. From Adam to the Flood was 1700 years and from the Flood until now was 4500 years. There were probably about 10 generations between Adam and the Flood. On the mtDNA map8 of humanity, the three major halogroups are joined by relatively short line segments, indicating there is not much difference between them. This is consistent with the three young women on the Ark, in that they came from a world where only a few generations had lived before them. From these three nodes emanate dozens of other mtDNA variants, each at a relatively greater distance than the three major halogroups. This is consistent with the dispersion at Babel where there would have been rapid dispersion and isolation of dozens of groups. Since Babel, there have been many generations accounting for the relatively larger distances between the dozens of mtDNA variants we see today and the three major halogroups from which they emerged. Incredible! The history of humanity is in our genome. What we know about the mtDNA of humans fits the 6000-year biblical timescale, explains the three halotypes, and the relative differences between pre- and post-Flood humanity.
There are some animals where the mtDNA data does not seem to fit the creation or evolutionary timescales. Examples are mice, chickens, and penguins. However, only one study has been done for each of these animals. It took several studies to get an accurate human mtDNA mutation rate.
On the other hand, the mtDNA data for roundworms, fruit flies, water fleas, and baker’s yeast do fit the 6000-year timescale when divergence of genera, not families, is considered.
Hence genetics suggest a very short (6000-year) timespan for life on earth and not hundreds of millions of years. The young earth creation framework makes genetic predictions that have fit real data across very diverse organisms (six species, two kingdoms, three phyla).
Chapter 8: A Pre-existing Answer
Nuclear DNA differences are more difficult to compare across species. The nested hierarchies seen in the nucDNA are consistent with both evolution and creation models. The functions of DNA may discriminate between the two views. For the evolution model, all differences in nucDNA are due to mutations. In the creation model, differences in mtDNA sequences are due to design and mutations. When comparing DNA sequences in similar genes in different families, evolution says all differences are due to mutations, while creation says the differences were designed with distinct functionality. Another prediction involves the non-coding DNA regions: evolution says there will be much non-functionality, while creation predicts functionality for most of the genome. Results from the ENCODE project have suggested that at least 80% of the human genome is functional. These results are preliminary, but the trajectory is clear: most non-coding DNA in the human genome is functional and serves in a regulatory capacity. However, only systematic knockout experiments can fully demonstrate this.
Evolutionists say that shared pseudogenes9 point to common ancestry. However, many alleged genetic “mistakes” have proved otherwise. One example is the alleged fusion of human chromosome 2.10 Presumably, since most apes have 24 chromosomes and humans have 23, there must have been a chromosome fusion event in the past (since we allegedly share a common ancestor). However, the alleged region of fusion is not a scar but has been found to be fully functional.10 The alleged fusion event was based on ignorance, not rigorous research.
The measured human and chimp nucDNA mutation rates are the same: 78 base pairs per generation. According to evolution, the human/chimp split occurred between 4.5 and 7 million years ago. The evolutionary model predicts only half of the actual differences. Hence the evolutionary model and timescale over predicted the actual mtDNA differences and under predicted the actual nucDNA differences. Whatever mechanism evolutionists invoke to explain the mtDNA results (natural selection, slower mutation rate in the past, etc.), another mechanism will be needed to explain the nucDNA results. Some have said the homo/chimp split occurred 11 to 17 million years ago, but this would make the mtDNA discrepancy even worse.
The known human nucDNA mutation rate applied to the last 200,000 years (alleged time of the emergence of homo sapiens) greatly underestimates the actual number of mutations between humans in Africa (515,000 predicted; 4.31 million observed).
Human chromosomes differ by millions of single nucleotide polymorphisms (SNPs) between and within individuals. When DNA sequences in a chromosome pair are identical, they are said to be homozygous. When they differ, even by one base pair, they are said to be heterozygous. Inheritance, and not mutations, is the main cause of heterozygosity within individuals.
Plant inbreeding experiments showed that the nucDNA mutation decreased as the heterozygosity decreased. This same phenomenon has been observed in humans and chimps. And as the nucDNA becomes more homozygous, it becomes less probable that recombination and gene conversion will generate novel combinations of genes.
Creationists explain the mtDNA data by mutations and the nucDNA differences as pre-existing in Adam and Eve (greater than 99% of all differences were already in Adam and Eve) when they were created. The same ideas would apply to all vertebrates.
The YEC model envisions three bottlenecks: Adam and Eve, the Flood, and the Babel dispersion. Each bottleneck was followed by exponential population growth. A population bottleneck need not be a genetic bottleneck, provided there is rapid growth following the population bottleneck. A rapid population expansion results in a large number of mutations that are rare in frequency. The current nucDNA differences among humans look like the result of a recent and rapid population expansion. Both evolutionary and creation models can explain this. However, the YEC model makes testable models about the history of civilization assuming a 6000-year timescale and that all common variants trace back to Adam and Eve. The Y-chromosome (from men only) and mtDNA (from women only) can serve as molecular clocks; they can be used to look at historical migrations.
Jeanson speculates that most nucDNA differences in other species were also built-in at creation and hence will prove to have unique functionality. In contrast, evolution would predict that these differences are due to mutations only and are functionally neutral.
Chapter 9: From DNA to Visible Traits
There are 70,000 vertebrate species in 1100 families. How could tens of thousands of species form in just a few thousand years? Answer: there are an enormous number of chromosome combinations possible from a pair of heterozygous parents. All extant human chromosomes are very diverse and scrambled. For example, human chromosome #1 comes in many varieties. Mutations alone can’t account for this diversity in 6000 years starting from a homozygous pair. We would expect only 15,400 mutations in humans over 6000 years. In the creation model, we can assume Adam and Eve started with roughly 40,000 heterozygous sites per chromosome.
In forming sex cells, chromosomes undergo recombination and gene conversion. In recombination, chunks of DNA are swapped between pairs of the same chromosome to generate a new combination of genes and hence traits. Gene conversion is similar but only tiny amounts of DNA are involved. Each chromosome usually goes though a recombination event per generation while only every other chromosome undergoes gene conversion per generation. Without mutations, the DNA sequences in genes remain the same; it is the combination of genes that changes. All base pairs in a given chromosome are said to be linked. Recombination and gene conversion disrupt this linkage. In the 6000 years of biblical history, there could have been between 6200 and 39,600 linkage disruption events, assuming generational time of 15 to 50 years, in a single lineage. Hence there would have been between 135 and 498 linkage-breaking events per chromosome in the last 6000 years for a single lineage. Since there have been many lineages, the number of possible versions of a given chromosomes is huge. If each chromosome today existed in 100 versions (a conservative estimate), there would be 1085 number of possible chromosome combinations. In other words, if you have heterozygous ancestors, an almost limitless variety of combinations of chromosomes, genes, and traits are possible. This same thinking applies to other species.
How do some traits get isolated and become a new species? Speciation can occur when a new combination of traits confers an advantage that facilitates having more offspring relative to others or by migration and isolation of a subpopulation. Can migrations in the wild isolate populations quickly enough to produce tens of thousands of new species in 6000 years? We know breeding can do this easily. Human breeders have produced 850 horse breeds that have five to six million nucDNA differences. There are between 10 and 28 million differences in nucDNA sequences in horses in the wild. Hence, if human breeders can create so many species starting with relatively little genetic diversity, then natural selection should be able to generate a few species (seven in the case of equids) starting with relatively greater genetic potential (heterozygosity). Starting with a large diversity, many different combinations of chromosomes can be generated rapidly. Migration events can isolate subpopulations. The isolated subpopulations would become more homozygous because of inbreeding. DNA variety can be lost due to chance, infertility, small numbers of offspring, some individuals never mate, etc. The more homozygous a population becomes, the less it resembles the original population. Speciation can occur when a subpopulation has become isolated and moves towards homozygosity. The speciation process involves three steps: (1) formation of genetic distinctiveness, (2) isolation of distinct individuals, and (3) regrowth of new populations. Steps 1 and 2 may occur in any order. We have data for 300 to 400 mammal species representing 23 mammal orders concerning their gestation times, age of sexual maturity, litter sizes, and lifespans of parents. Provided that the founder couples had significant heterozygosity, generating tens of thousands of new vertebrate species in 4500 years (since the Flood) from 1100 pairs of vertebrate ancestors is feasible mathematically.
For evolutionists, the ultimate cause of genetic change is mutation. Since the mutation rates are slow and the number of differences in extant organisms are large, much time would be required to explain the current diversity. For creationists, heterozygosity (millions of differences in DNA sequences of chromosome pairs) was built into organisms from the beginning by the Creator, so long periods are not required for the production of new species. Starting with heterozygous organisms, visible distinctiveness in offspring would soon be apparent. In the creation model, recombination and gene conversion would provide many new varieties of combinations of traits quickly since the differences are already built-in. In contrast, the differences needed for speciation in the evolution model come slowly and sequentially through a mutation/natural selection process.
The 6000-year speciation model is necessary to explain the origin of the observed mtDNA differences in light of the measured mutation rate, the origin of nucDNA differences (built-in at creation), and the combination of heterozygous ancestors needed to explain the number of species within families.
Chapter 10: On the Origin of New Species
A small heterozygous population will tend towards homozygosity. When this happens, some recessive traits will be revealed. The creation and evolution models agree that all species within families share a common ancestor. They also agree that mtDNA differences result from mutations although mutation rates are disputed. We can use mtDNA differences to construct branching ancestral trees, much like a human family tree.
Consider the Bovidae family (cattle, sheep, antelope). There are hundreds of species in this family for which there is ample nucDNA and mtDNA information for analysis. There are only a few thousand mtDNA differences separating any two species within this family. We can draw a branching tree from these data. The tree shows splitting (speciation events). The distances between the splitting events (branch points) to new species are reflective of the number of mtDNA differences. A plot of the number of species (y-axis) versus the number of mtDNA differences from the tree’s root (x-axis) forms a straight line with a positive slope. Assuming a constant mtDNA mutation rate, the plot shows the number of species as a function of time. Straight-line plots of this nature can be drawn for the species within many mammal families (Old World monkeys, weasel, deer, cat, dolphin, dog). What these plots suggest is that there is a constant mtDNA mutation rate within families and the mtDNA mutation rate per species decreases as homozygosity increases. For nucDNA, speciation decreases heterozygosity and hence the potential for speciation.
Most nucDNA differences between equids are homozygous within the equid species. Of the 26 million nucDNA differences between the imperial zebra and the domestic horse, just two million are heterozygous within the domestic horse. Other species display the same pattern.
There are 16,000 species of mammals in the fossil record, but only 5400 are living today. There are 550 mammal families in the fossil record, but only 150 living now. Extinction accounts for the differences. Most families today are species-poor. Early extinction events would remove heterozygosity and hence speciation potential. This could explain why there are so many species-poor families today.
Jeanson speculates there may be a linkage between nucDNA heterozygosity and the mtDNA mutation rate.
Jeanson’s work facilitates a few predictions. He predicts that the linear relationship between number of species and time discussed above will be observed in more families and that these plots coupled with measured mutation rates will reveal correct rates of speciation. Also expected is that most non-coding DNA will be functional. Differences in mtDNA sequences between families are expected to reflect functional differences and not just be due to neutral mutations. Measured mtDNA mutation rates and known mtDNA differences within families are expected to fit the creation timescale assuming a constant mutation rate and created kinds started with no mtDNA mutations.
Jeanson’s book is a good example of original creationist research. He shows how operational science produces results in harmony with biblical history. He makes testable predictions. Time will tell if his model can explain new data as it comes.
1.
Jeanson NT (2017) Replacing Darwin: The New Origin of Species. Master Books, Green Forest, AK.
2.
Dr. Nathaniel T. Jeanson, < https://answersingenesis.org/bios/nathaniel-jeanson/ > Accessed 2018 Jan 04
3.
See < http://tasc-creationscience.org/article/current-science-and-creation > for a summary of a debate with Dennis Venema of Biologos that took place in April of 2017.
4.
Of course, today creationists acknowledge variation within kinds, which Darwin got right, but reject macroevolution, which Darwin mistakenly embraced.
5.
However, some similarities between organisms are believed to be a result of “convergent evolution,” not common ancestry. See < http://tasc-creationscience.org/article/can-nature-perform-same-miracle-multipletimes-problems-convergent-evolution >
6.
Sarfati JD (2008) Fibre optics in eye demolish atheistic ‘bad design’ argument. Creation 31(1):45–47, < https://creation.com/fibre-optics-in-eye-demolish-atheistic-bad-design-argument > Accessed 2018 Jan 04
7.
Jeanson assumes the mtDNA mutation rate of chimpanzees is the same as for humans. The mtDNA mutation rate for chimpanzees has not been determined. However, the chimpanzee nucDNA mutation rate is within 12% of human nucDNA mutation rate, so the assumption is reasonable.
8.
Jeanson NT (2016 Apr 27) On the origin of human mitochondrial DNA differences, new generation time data both suggest a unified young-earth creation model and challenge the evolutionary out-of-Africa model. < https://assets.answersingenesis.org/doc/articles/arj/v9/out-of-africa/figure-1.pdf > Accessed 2018 Jan 04
9.
Evolutionists believe that pseudogenes are non-functional remnants of once functional genes.
10.
a. b. Reynolds D (2015 Apr) On the origin of humans. < http://tasc-creationscience.org/article/origin-humans > Accessed 2018 Jan 04
No Replacement of Darwin
A Review of Replacing Darwin—The New Origin of Species
by Stefan Frello on April 25, 2018
PDF Download
Share:
Jeanson (2017a) takes on a formidable task: To show that the theory of evolution is wrong, and to replace it with biblical creation. To make it short: Jeanson fails.
Let me start by praising Jeanson for his easy-to-read and easy-to-understand style. The book is readable by the broad public, and it has a brilliant account of the basics and history of genetics. All details necessary to understand the arguments are clearly presented.
Biogeography, taxonomy, genetic diversity, and speciation are the main topics, which, according to Jeanson, the theory of evolution either fails to explain or which can be explained without reference to evolution.
I’ll go through the four topics one by one; give an ultrashort account of Jeanson’s argument and explain why I think he fails to prove his point.
Biogeography
This is the study of the distribution of species over the world. Jeanson describes in some detail why he thinks migration from Eurasia to the rest of the world can explain the current distribution of animals. He concludes that “Migration fits the current geographic distribution of species” (Jeanson 2017a).
This is a bold assertion. A few examples will show why.
Of 19 families of marsupials, 17 are endemic to Australia and the nearby islands. (endemic: a species or group of species living exclusively in a well-defined area). Jean Lightner, an associate of the Creation Research Society, has identified all these families as separate biblical kinds in her overview of mammalian ‘Ark kinds’ (Lightner 2012). It is therefore relevant to ask how it comes that all these animals migrated from the Middle East to Australia, leaving no trace behind them, if the biblical story of the Flood is true. Further, they were only followed by those placental mammals that have the best chance of traveling over the sea (a few families of bats and one family of rodents). What a coincidence! I love to think about the poor marsupial mole digging its way from Turkey (Mt. Ararat) to Australia, trying to keep up with kangaroos, koalas, wombats, and numerous crawling, hopping, and gliding marsupials.
In Central and South America, there are four endemic families of monkeys (no family of monkeys live in both Central and South America and other areas). All four are recognized as separate ‘kinds’ by Jean Lightner, who recognizes a total of 15 primate ‘kinds.’ Judged by the homology of the mitochondrial genome (hereafter mtDNA), the Central and South America monkeys are closer related to one another than to other groups. This is reflected in the fact that they are all members of the so-called ‘parvorder’ (a group-level between family and order) Platyrrhini (New World Monkeys). According to evolution, this is because all four originated from a single group of monkeys that made it to South America after it split from Africa by plate tectonics. According to creation, they must have made it to South America separately after the end of the Flood. What a coincidence!
Correspondingly four of five ‘kinds’ of primates on Madagascar are lemurs, which are endemics of Madagascar. What a coincidence!
Conclusion: Jeanson fails to account for biogeography, while the topic is among Darwin’s original arguments in favor of evolution.
Taxonomy
An important difference between the theory of evolution and creationism is the interpretation of the biological taxonomical hierarchy. According to the theory of evolution, all levels of the hierarchy reflect common descent. According to creationism, no level above the created ‘kinds’ (in vertebrates more or less the family-level) reflects common descent.
According to Jeanson (Chapter 5), common descent is not needed to explain the nested hierarchies. He uses the analogy of vehicles to explain how such a nested hierarchy would result from design as well. For example, in vehicles the Family level could be cars, pickups, SUV and the like. The Order level would include tractors, the Class level would include military tanks, and the Phylum level would include airplanes. This Phylum would be ‘Powered Vehicles.’ Another Phylum could be ‘Unpowered Vehicles’ exemplified by a hang-glider. All these belong to the Kingdom of ‘Vehicles.’ Other Kingdoms, would be other devices: computers, washing machines, tools and so on. Jeanson’s corresponding examples in animals are Family: Horses; Order: Odd-toed ungulates (horses, rhinos and tapirs); Class: Mammals; Phylum: Chordates. Kingdom: All animals.
However, in designed objects, many of the smallest parts are exactly the same: the same kind of batteries, wires and LEDs are used in different devices. The same kind of artificial polymers and metal alloys are used as well. Also, more complex parts follow this pattern. The use of diesel engines vs. gasoline engines vs. electrical engines does not follow any reasonable taxonomy of vehicles. The problem goes further than just the common use of these things. One model of airplane, ferry, and car could use an upholstery constructed of, say, 10% rayon and 90% nylon. Another model of airplane, ferry, and car could use an upholstery constructed of, say, 90% rayon and 10% nylon.
When it comes to living organisms, a corresponding violence of the hierarchical pattern would hardly be possible. When you look at, for example, structure of the cell membrane, it follows large taxonomical groups. Any protein sequence from the GenBank database is unique to the species or genus it comes from. The structure of the eye of vertebrates differs from that of mollusks by the arrangement of retina and nerve cells. Arthropods have yet another arrangement. Other arrangements can be found in various other phyla, always following the taxonomical groups.
Why does the skeleton of whale flippers resemble that of land mammals rather than that of shark fins (which have the same overall function as the whale flipper)? All examples where evolution put restrictions on the ‘design.’
Another objection to Jeanson’s model is that there is no ‘natural’ hierarchy of vehicles. His major groups are ‘Powered’ and ‘Non-powered.’ But why not ‘Military’ and ‘Civilian’ (historically that would make more sense), or ‘For transportation of people’ and ‘For transportation of goods’? Or why not use ‘Powered’ vs. ‘Non-powered’ as the main categories, including washing machines in the Kingdom ‘Powered devices,’ while furniture, hand-tools and bicycles is placed in the Kingdom ‘Non-powered devices.’
Contrary to this, evolution immediately suggests a natural hierarchy: that based on descent. Today descent is mostly evaluated by comparing DNA-sequences for at least two reasons: DNA is the ultimate source of variation; and the details of information in DNA is much larger than in any other group of characters.
In practice, it is a problem that not all genes suggest the same phylogeny. This is due mainly to the stochastic process of mutation. Dealing with more genes at the same time (as in mtDNA) mostly solves the problem. To put the argument to the limit, look at a motor glider and a normal glider (aircrafts). They are virtually identical. However, according to Jeanson’s system, the motor glider belongs to the phylum ‘Powered vehicles’ while the normal glider belongs to the phylum ‘Non-powered vehicles,’ and as such, they should be more different than an electrical bicycle and a joint strike fighter (both belonging to the same phylum). What could be more ridiculous? Biological hierarchies, based on evolution, would never end up in such self-contradicting nonsense.
Conclusion: Jeanson fails to account for the nested hierarchy of living organisms, while it is an inevitable part of theory of evolution as it directly reflects common ancestry.
Genetic Diversity
According to Jeanson, most of the genetic variation within ‘kinds’ existed before speciation, and can be explained as original created variation. The theory of evolution agrees that genetic diversity existed prior to speciation but ascribes it to accumulation of mutations over past eons. Jeanson uses great apes as one example among others (Chapter 10). He excludes humans from the family, as humans are not part of the great ape ‘kind.’ Jeanson relies on the nuclear genome in his analysis. However, if you compare homology between nuclear genomes from humans, chimps, gorillas, and orangutans you have no choice. If homology between nuclear genomes reveals relationship, chimps are closer related to humans than to gorillas and orangutans (Prado-Martinez et al. 2013). If homology between nuclear genomes has nothing to do with relationship, Jeanson’s calculations are worthless. What is it?
Though data from the GenBank database could be used to test Jeanson’s idea that the majority of genetic variation within families is due to original created variation, he makes no attempt to do so. To illustrate how this could be done, I have used information about differences in 15 nuclear genes in cats (Johnson et al. 2006). Cats are among the ‘kinds’ that, according to the Bible, were present at the Ark in only one pair. Therefore, a maximum of four alleles1 of each gene could be present in this original pair. This should be traceable in the current variation within the cat family.
Fig. 1 shows the sum of differences found in these 15 genes.
+
Fig. 1. Numbers are the sum of differences in DNA sequences found in 15 protein coding nuclear genes in various species of cats (the family Felidae). Colors show homology. Low homology: blue. Medium homology: white. High homology: red. 8696nt: The total length of the DNA sequences of the 15 genes in question. Bold lines indicate four species groups, corresponding to four original alleles. See main text for further explanation (Johnson et al. 2006).
To squeeze these results into four groups (the squares) reveals that at least 79 mutations must have occurred. According to creationism 4400 years has passed since the Flood, so there is a maximum of 4400 generations (no cats start breeding before they are two years old on average) between the most distantly related species. 79 mutations in 4400 generations in a sequence of 8696 nt correspond to 1 mutation in 500.000 nt per generation. In humans, according to Jeanson, the corresponding number is 1:40 million (78 mutations per generation per genome, 3.1 billion nt). Cats would have to have an almost 80 times higher mutation rate than humans. At best an extremely bold prediction.
Multifunctionality of mitochondrial genes
A related topic is the fact that whenever genes are present in larger groups of species, such as mammals, all animals, or even all eukaryotes (organisms with a cell nucleus), the homology of the genes resemble the homology of the anatomy. mtDNA has no known function related to anatomy or physiology, yet the homology between mtDNA reflects that of anatomy throughout the biological system. Jeanson’s solution is to ascribe additional functions to the mitochondrial genes (Chapter 7). Such function should discriminate marsupials from other mammals, beetles from butterflies, squids from oysters and all the numerous groups of singled celled eukaryotes from each other. What he actually suggests is several functions of each gene. With no shred of evidence!
I am not sure Jeanson actually has realized what a challenge he has given himself. Let’s take the mitochondrial protein ‘Cytochrome oxidase subunit 1’ or just ‘Cox1’ as an example, starting with the dog family (Canidae).
Jeanson has to suggest, and ultimately identify, one or more function(s) of the Cox1 protein that can explain why this gene can be used to discriminate between Canidae and other families in the suborder Caniformia (such as bears and seals). He has to repeat this process (with either the same or another function) and explain why Cox1 can be used to discriminate between Caniformia and the suborder Feliformia (for example, cats and hyenas). Caniformia and Feliformia are suborders of the carnivore order, Carnivora, and Jeanson has to make the same explanations about the discrimination of Carnivora from other orders of placental mammals. Then the process should be repeated, comparing placentals, marsupials and monotremes, which together form the class Mammals. Next level is to compare Mammals with other classes of tetrapod vertebrates such as birds and crocodiles. Next, the tetrapods should be compared to other vertebrates such as bony fish and sharks. Vertebrates is a subphylum of the phylum Chordata, so vertebrates should be compared to invertebrate subphyla within the chordates, for example, the tunicates. Chordates then should be compared to other phyla, for example, arthropods or mollusks. We could extend the investigation to other kingdoms: plants or fungi, or to the plethora of single celled eukaryotes, who also have mitochondria.
Every single level can be recognized by their Cox1 protein sequence. On every level, homology within the group is as high or higher as it is when species within the group is compared to species outside the group. Jeanson suggests that this complicated pattern reflects function.
Instead of starting with the wolf, we could start with the ladybird (insects), the thale cress (plants), the portobello (fungi) or even the malaria parasite (single celled eukaryote).2 All have their own version of the Cox1 protein. The task of suggesting function to all these levels of living organisms is overwhelming. It is not enough to suggest one specific function. Jeanson still has to explain why the function in question reflect the hierarchical structure of taxonomy. If we, for example, accept that Cox1 has influence on fur-color, why then, is Cox1 from wolf more homologous to that of a leopard, than to that of a horse?
However, Jeanson’s problems don’t stop here. This is just the function of the proteins. The proteins are coded by genes. The majority of differences on the gene level (the DNA-sequences), are so-called silent or synonymous substitutions. These are differences between two protein-coding DNA-sequences that do not result in a difference at the protein level. If creation is true, and the differences between proteins are functional, the synonymous substitution must be functional as well. Otherwise, why would they reflect the taxonomy? Jeanson should suggest what those functions could be and how they can be so important that they outnumber the non-synonymous substitutions.
However, Jeanson’s problems don’t stop here.
About one third of the mtDNA in animals does not encode proteins but are so-called tRNA, rRNA or the D-loop (also called the control region). What anatomically relevant functions can be attributed to these regions?
The function of the various mtDNA sequences is well known. It is therefore Jeanson who has the burden of proof. I challenge him to suggest relevant functions, and explain how they fit the pattern outlined above. Until he does so, I will claim that he cannot.
From an evolutionary point of view, all these patterns of homology simply reflect the distance to the common ancestor.
Selection
Jeanson makes a number of other analyses on the mtDNA. In all cases, he fails to include selection, though this can be shown to be a very real phenomenon. To understand this you have to know that most mutations in protein coding genes fall into two categories: synonymous mutations that do not alter the resulting protein, and non-synonymous that do alter the protein. Due to the way DNA is translated into protein, about 21% of all mutations are synonymous (See Chapter 3, especially Table 3.1 and the appendix). I compared two of the most different human mtDNAs (GenBank numbers EF184607 and FJ168742) and counted the non-synonymous and synonymous differences in the protein-coding genes. 35 of 55 = 64% were synonymous. If more distant mtDNA sequences are compared (Modern Human: KC345974 and Denisovan: FR695060) 85% are synonymous. This tells us that non-synonymous mutations are under stronger selection than synonymous. Selection is thus important, and Jeanson should include it.
Jeanson doesn’t accept the mtDNA sequences from Neanderthals and Denisovans. He claims that the sequences are unreliable, partly because the DNA has been degraded or contaminated. I have urged him to confront the relevant scientists, but he refuses to do so for reasons I don’t think are valid (Frello 2017; Jeanson 2017b). If mtDNA from Denisovans is unreliable, the mistakes in the sequence should be expected to be randomly distributed, when counted as synonymous vs non-synonymous substitutions. A short look at the results mentioned above show that this is far from the case. To dismiss Denisovan mtDNA as unreliable is thus unfounded.
Conclusion
Jeanson fails to account for the pattern of genetic homology. According to the theory of evolution, the homology of both nuclear DNA and mtDNA is correlated with that of anatomy because both are due to the pattern of descent. The inclusion of humans with the other great apes is an integrated part of the theory.
Speciation
Jeanson deals with this in several ways (Chapter 6). First, he notices that the number of breeds of horses, dogs etc. is much larger than the number of species within the relevant family. Jeanson concludes that speciation within a biblical timeframe is unproblematic. He makes no calculations to support his claim. This is rather strange, because a method for doing so is right in front of his eyes: the mtDNA that he uses in other arguments.
As soon as such an analysis is made, the problems appear. A few calculations on mtDNA from dogs will illustrate the problem. Between mtDNA from domesticated dogs and wolves, there are about 170 differences. The dog family falls into two large groups: One includes wolf, dhole and the African wild dog; the other includes various species of foxes.3 The mtDNA from the two groups has between 2400 and 2600 differences between them. Not taking selection and differences in generation time into account, this means that the dog family is at least 15 times older than the domestication of dogs from their wolf ancestors. Taking selection into account will make this difference even larger. It should be noted that in the GenBank, mtDNA are missing from five genera (one of which is extinct) and several species of the dog family. Therefore it might be that the most different mtDNAs is yet to be identified. It also should be noted that the dog family is often used by creationists as an example of a biblical ‘kind’ and acknowledged as such by Lightner in her analysis of mammalian Ark kinds (Lightner 2012, 151–204).
Jeanson further argues that the variation in mtDNA within species or genera is way too small to represent the long time spans suggested by evolution. He doesn’t include selection in his analyses, though he could easily convince himself that this is a very real phenomenon. As in the example in humans above, if the ratio of synonymous vs. non-synonymous substitutions is compared between individuals with high vs. low homology, the difference leaves a strong signal of selection in mtDNA.
Jeanson uses mtDNA to track the speciation within a number of families and comes up with linear models of speciation in all the cases he evaluates. In his calculation of number of generations since the last common ancestor, Jeanson concludes that the time suggested by evolution is way too long to be accounted for by the differences within the species or genus in question. I have already pointed out that selection should be included in such calculations, but there is another objection that invalidates at least the non-human examples (fruit fly, water flea, and nematode), that is extinction. Jeanson makes no attempt to include extinction in his evaluation, though he appreciates that extinction is a very real phenomenon. This neglect leaves his analysis rather useless.
The first appearance in the fossil record of a genus or species need not be the last common ancestor of all modern members of that genus or species. That could appear much later if most other lines have become extinct.
Conclusion: Jeanson fails to account for the timing of speciation. If selection and extinction is taken in to account, the theory of evolution has no problem fitting the observations with the suggested time spans.
All in all, Jeanson fails on all four topics to show that creation can account for the observations, while the theory of evolution cannot.
Additional Points
Darwin didn’t know genetics
Jeanson postulates that because Darwin didn’t know genetics, there is good reason to question his theory. Let’s see if that is even relevant!
Species are defined by their traits! Traits are defined by genetics! Darwin didn’t know any genetics!
How then could Darwin write a book about the origin of species?
This seems like a legitimate question. But, consider the following premises of evolution:
If there are limited resources; If traits are inherited; If there is variation in inherited traits; If some source of new hereditary variation exists; If part of the inherited variation influence survival and, more importantly, reproduction. Then we can conclude the following:
Some hereditary traits, those that support reproduction more than the alternative traits, will spread in a population. Others will disappear. Hence, the combination of hereditary traits in the population will change over generations. This is evolution in its most basic form: Descent with modification.
Darwin’s bold idea was not only to suggest this process, but also to suggest that this process could go on forever, and that there is no limit to variation.
Evolution will take place whenever the premises are met, regardless of how heredity actually works. Knowledge of the details of heredity thus isn’t necessary to suggest evolution!
However, that doesn’t mean that knowledge of genetics is irrelevant. The details of genetics has to be such that variation actually is endless! It has to be such that brand new traits actually can occur!
When investigated, the genetic variation within and among species has to reflect the expectations that can be made from descent with modification. Otherwise, evolution would have been disproven.
That’s why genetics is such a relevant subject, when it comes to evolution.
Nevertheless, Jeanson’s assertion that Darwin’s theory was unfounded in his own times, fails.
Strange quotes
Here are a few strange quotes from the book:
Chapter 3:
“At the molecular level, major changes to the standard developmental pathway for vertebrae would be required to produce the giraffe’s signature structure [the long neck].”
Hardly. The neck of the giraffe is much longer than that of the okapi. They are both from the family Giraffidae, and therefore the same biblical ‘kind’ (Lightner 2012). Apparently, a factor 2 change in neck length is no problem within the biblical timescale of 4400 years.
Chapter 3:
“Could jellyfish become jaguars?”
Why such a silly example. No biologist has ever suggested this. Evolution can only result in transformations that can be linked by multiple small differences. The theory of evolution does not state that all organisms can evolve into any other.
Chapter 10:
“How can miracles have a place in science? If you’re an evolutionist, I would respond by pointing to Michael Behe’s published work.”
Michael Behe’s central ideas of ‘Intelligent design’ and ‘Irreducible complexity’ have never been accepted by ‘secular’ scientists. His books has been heavily criticized in ‘secular’ scientific journals. Referring to Behe as an example of a scientist who refers to miracles, only shows that Jeanson apparently is not aware of this fact.
Afterword:
“If atheistic evolution is true . . . How can you trust them [your eyes] to convey accurate information?”
If evolution is true all details in our anatomy are the result of mutation/selection through eons of time. Numerous small beneficial variations in our forefathers have been selected and added to beneficial variations in their ancestors. To what benefit would a variation in an eye be, if it didn’t help survival and, ultimately, reproduction? None! How can a variation in the eye help survival? Only by giving a slightly more accurate picture of the world. Therefore, according to evolution, we can trust our senses because they are the result of natural selection. That they are not 100% accurate is understandable. Random variation cannot be expected to result in perfection.
Jeanson is taking selection out of evolution, and then saying: Look, evolution doesn’t work.
I don’t know who first came up with this nonsense. I first came upon it when I heard Jason Lisle talk about his so-called ‘Ultimate Proof of Creation.’ It’s like taking God out Christianity and saying: Look, it doesn’t work.
A Short Concluding Remark
Would you trust an Atheist to teach your children about Christianity? If not—don’t trust a creationist to tell them about evolution!
References
Frello, S. 2017. ‘Reply to “Response to ‘On the Creationist View on mtDNA’.”’ Answers Research Journal 10: 237.
Jeanson, N. T. 2017a. Replacing Darwin: The New Origin of Species. Green Forest, Arkansas: Master Books.
Jeanson, N. T. 2017b. ‘Response to “Reply to ‘Response to ‘On the Creationist View on mtDNA’.”’ Answers Research Journal 10: 239–240.
Johnson, W. E., E. Eizirik, J. Pecon-Slattery, W. J. Murphy, A. Antunes, E. Teeling, and S. J. O’Brien. 2006. “The Late Miocene Radiation of Modern Felidae: A Genetic Assessment.” Science 311 (5757): 73–77.
Lightner, J. 2012. “Mammalian Ark Kinds.” Answers Research Journal 5: 151–204.
Prado-Martinez, J. et al. 2013. “Great Ape Genetic Diversity and Population History.” Nature 499 (7459): 471–475.